"Planificación de Clases"

MODALIDAD: Por Plataforma institucional

MATERIA: Matemática.	<u>AÑo:</u> 5°
TURNO: Mañana y tarde	DIVISIONES: Todas
DOCENTES: Mónica Guaymás. Patricia Cano. Claudi	a Vercellino. Víctor Chocobar.

TIEMPO	TEMA A TRABAJAR	3
Segunda	Función Lineal. Representación gráfica de una función lineal. Ecuación de la recta que	CONTRACTOR NO.
quincena de Abril	pasa por dos puntos.	Montecon
	Marco Teórico	0000000

¿CUÁNDO ES LINEAL UNA FUNCIÓN?

Una función es lineal cuando su fórmula general es:

Por ejemplo:

Para la función y = 2 X - 1

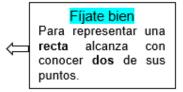
La pendiente es m = 2 como $2 > 0 \implies$ la función es creciente

Como **b = -1** \implies la recta corta al eje vertical en y = -1

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN LINEAL:

Como una función lineal es una **recta**, para representar su gráfica sólo tenemos que trazar la recta que une dos de sus puntos. Para ello, calculamos la imagen de dos puntos cualesquiera, podemos hacerlo **completando una tabla**, como la siguiente:

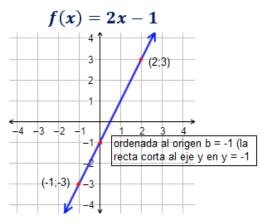
х	<u>v</u> ≡ 2 X - 1	(x; y)
-1	y = 2.(-1) - 1 = -2 - 1 = -3	(-1; - 3)
2	y = 2 2 - 1 = 4 - 1 = 3	(2;3)



ACLARACIÓN:

Otra manera de expresar la función anterior es:

f(x) = 2 X - 1 (en este caso se utiliza la expresión f(x) en vez de y)



Otra forma de representar una función lineal es analizando la intersección de la recta con los ejes x e y. Luego se traza la recta que pasa por esos puntos.

Por ejemplo:

Sea la función
$$f(x) = -\frac{1}{4}X - 2$$

Analizamos las intersecciones con los ejes

- Intersección con el eje y: (x = 0)

Para encontrar el punto intersección debemos sustituir (x = 0) en la fórmula de la función:

$$f(x) = -\frac{1}{4} X - 2$$

$$f(0) = -\frac{1}{4} \cdot 0 - 2$$

$$f(0) = 0 - 2 = -2$$
 Punto intersección: (0; -2)

Es correcto el valor encontrado, porque la ordenada al origen de la función es $\frac{b=-2}{2}$, es donde la recta corta al eje y.

- Intersección con el eje x: (y = 0)

Sustituimos el valor de f(x) = y = 0 en la fórmula de la función:

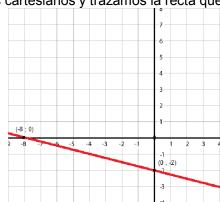
$$f(x) = -\frac{1}{4} X - 2$$

$$0 = -\frac{1}{4} X - 2$$
 Nos queda una ecuación, despejamos **X**

$$0 + 2 = -\frac{1}{4} X$$

2 :
$$(-\frac{1}{4}) = X$$

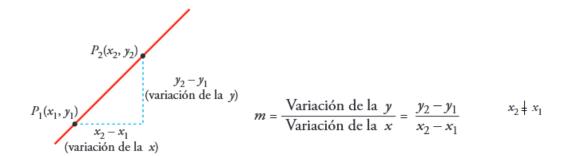
Ubicamos los dos puntos en los ejes cartesianos y trazamos la recta que pasa por los dos puntos.



La pendiente de esta recta es m = - $\frac{1}{4}$ como m < 0 \implies la función es decreciente (la recta "baja").

ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS:

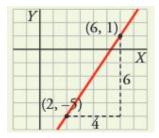
Para obtener la ecuación de la recta que pasa por dos puntos, primero debemos obtener la pendiente. Usamos la siguiente fórmula:



Ejemplo:

Hallar la ecuación de la recta que pasa por los puntos P_1 = (6;1) y P_2 = (2; -5) Debemos encontrar primero la pendiente de la recta:

Gráficamente: Ubicamos los puntos en los ejes cartesianos:



Observamos que:

La variación de la variable y: 6 unidades (6 cuadritos) La variación de la variable x: 4 unidades (cuadritos). entonces encontramos la pendiente $m = \frac{6}{7} = \frac{3}{2}$

Usando la fórmula:

P₁ = (2; -5) y P₂ = (6; 1)
x₁ y₁ x₂ y₂

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{1 - (-5)}{6 - 2} = \frac{6}{4} = \frac{3}{2}$$

Una vez que tenemos la pendiente debemos encontrar el valor de la ordenada al origen, es decir, el valor de b:

Partimos de la fórmula general:
$$f(x) = m \cdot x + b$$
 Sustituimos la pendiente encontrada, es decir, $m = \frac{3}{2}$
$$f(x) = \frac{3}{2} \cdot x + b$$
 Sustituimos unos de los puntos a elección, por ejemplo, $P_2 = (6; 1)$
$$1 = \frac{3}{2} \cdot 6 + b$$

$$1 = 9 + b$$

$$1 - 9 = b$$

$$-8 = b$$

Sustituimos el valor de

m y b y obtenemos la fórmula buscada:

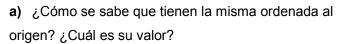
$$f(x) = \frac{3}{2}x - 8$$

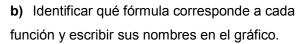
ACTIVIDADES

1) Completar la tabla. En la última fila, escribir un punto que pertenezca a la recta.

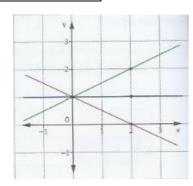
m	3	
b	$\frac{-5}{3}$	
y = m . x + b		y = - 6 x + 1
Punto de la recta	(;)	(;)

2) El gráfico muestra tres funciones lineales que tienen la misma ordenada al origen.





$$f(x) = \frac{1}{2}x + 1$$
 $g(x) = 0 x + 1$ $h(x) = -\frac{1}{2}x + 1$



3) Considerar las funciones $f(x) = 2 x y g(x) = -3 x + \frac{5}{2}$

a) Completar cada tabla eligiendo dos valores de x y calculando sus correspondientes valores de y. Luego marcar esos puntos en el sistema cartesiano y graficar las funciones lineales.

х	f(x) = 2 x	(x; y)

Х	$g(x) = -3 x + \frac{5}{2}$	(x; y)

b) A partir de sus gráficos, indicar cuál de las funciones es creciente y cuál, decreciente.

c) ¿Eran necesarios los gráficos para responder el ítem anterior? ¿Por qué?

4) Indicar la pendiente y la ordenada al origen de las siguientes funciones lineales. De ser necesario, escribir la fórmula como y = m x + b

a)
$$y = 0.5 x$$

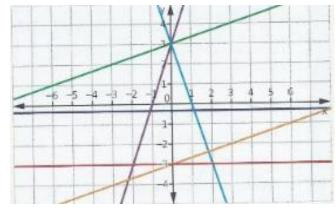
c)
$$y + 3 = 4 x$$

d)
$$y = 5 - x$$

a)
$$y = 0.5 x$$
 b) $y = -2$ c) $y + 3 = 4 x$ d) $y = 5 - x$ e) $y = -4 (5x - 1)$

5) Juan va a graficar la función f(x) = 2 x - 1 y dice que mirando la fórmula obtiene un punto en forma inmediata ¿A qué se refería?

6) Observa el gráfico con detenimiento e identifica cada una de las siguientes funciones:



$$f(x) = 3x + 3$$
 $j(x) = \frac{1}{3}x + 3$

$$j(x) = \frac{1}{3}x + 3$$

$$q(x) = -3x + 3$$

$$g(x) = -3x + 3$$
 $k(x) = -\frac{1}{3}$

$$h(x) = \frac{1}{3}x - 3$$
 $p(x) = -3$

$$p(x) = -3$$

7) Representar las siguientes funciones lineales analizando las intersecciones con los ejes x e y:

a)
$$f(x) = -x + 4$$

b)
$$g(x) = -\frac{1}{5} x$$

d) $p(x) = -4 x - 2$

c)
$$h(x) = \frac{1}{3}x + 5$$

d)
$$p(x) = -4 x - 2$$

- 8) Un taxista cobra \$120 por "tarifa mínima" y luego \$20 por cada kilómetro de recorrido. Un segundo taxista no cobra tarifa mínima, pero cobra \$60 por cada kilómetro.
 - a) Plantear la fórmula para calcular el costo del viaje "y" cuando una persona recorrió "x" kilómetros para ambos taxistas.
 - b) Determinar en cuál taxi es más económico viajar una distancia de 4 kilómetros.
 - c)¿En qué distancia ambos taxistas cobran lo mismo?
- 9) En un curso de manejo, cada hora de clase cuesta \$180.
 - a) Hallar una fórmula que permita calcular el valor del curso (y) de x horas de duración.
 - b) ¿Cuánto se deberá pagar por un curso de 8 hs. de manejo?
 - c) Si en total se pagó \$ 2.160 ¿Cuántas horas de clase asistió una persona?
- **10)** Encontrar la ecuación de la recta que pasa por los puntos $(\frac{5}{2}; -3)$ y (-1; 2)
- 11) Encontrar la ecuación de la recta representada:

